Symmetrische Gruppe

Ein Cayleygraph der symmetrischen Gruppe S4
Verknüpfungstafel der symmetrischen Gruppe S3
(als Multiplikationstafel der Permutationsmatrizen)

Die symmetrische Gruppe (, oder ) ist die Gruppe, die aus allen Permutationen (Vertauschungen) einer -elementigen Menge besteht. Man nennt den Grad der Gruppe. Die Gruppenoperation ist die Komposition (Hintereinanderausführung) der Permutationen; das neutrale Element ist die identische Abbildung. Die symmetrische Gruppe ist endlich und besitzt die Ordnung . Sie ist für nichtabelsch.

Der Name der Gruppe wurde deshalb so gewählt, weil die Funktionen der Variablen , die bei allen Permutationen invariant bleiben, die symmetrischen Funktionen sind.[1]

Mitunter findet man auch die Definition der symmetrischen Gruppe oder einer beliebigen nicht-leeren Menge , bestehend aus allen bijektiven Abbildungen der Menge in sich, zusammen mit der üblichen Komposition von Abbildungen. Die Gruppe ist dann die symmetrische Gruppe von .[2]

  1. B. L. van der Waerden: Moderne Algebra. 3. verbesserte Auflage. Springer-Verlag, Berlin, Göttingen, Heidelberg 1950, S. 21 (VIII, 292 S.).
  2. Kurt Meyberg, Peter Vachenauer: Aufgaben und Lösungen zur Algebra. Carl Hanser Verlag, München, Wien 1978, S. 1.

Developed by StudentB